LexA Repressor Forms Stable Dimers in Solution
نویسندگان
چکیده
منابع مشابه
Conservation of the LexA repressor binding site in Deinococcus radiodurans
The LexA protein is a transcriptional repressor of the bacterial SOS DNA repair system, which comprises a set of DNA repair and cellular survival genes that are induced in response to DNA damage. Its varied DNA binding motifs have been characterized and reported in the Escherichia coli, Bacillus subtilis, rhizobia family members, marine magnetotactic bacterium, Salmonella typhimurium and recent...
متن کاملLexA protein is a repressor of the colicin E1 gene.
LexA protein is a repressor of several chromosomal genes involved in the SOS response in Escherichia coli. In previous experiments, we found that LexA protein may also be a repressor of the colicin E1 gene. We now present evidence that the purified LexA protein strongly repressed the in vitro transcription of the colicin E1 gene. As determined in DNase I protection experiments, LexA protein bou...
متن کاملInteraction of Escherichia coli RecA protein with LexA repressor. I. LexA repressor cleavage is competitive with binding of a secondary DNA molecule.
Essential to the two distinct cellular events of genetic recombination and SOS induction in Escherichia coli, RecA protein promotes the homologous pairing and exchange of DNA strands and the proteolytic cleavage of the LexA repressor, respectively. Since both of these activities require single-stranded DNA (ssDNA) and ATP, the inter-relationship between these reactions was investigated and foun...
متن کاملThe putative K+ channel subunit AtKCO3 forms stable dimers in Arabidopsis
The permeation pore of K(+) channels is formed by four copies of the pore domain. AtKCO3 is the only putative voltage-independent K(+) channel subunit of Arabidopsis thaliana with a single pore domain. KCO3-like proteins recently emerged in evolution and, to date, have been found only in the genus Arabidopsis (A. thaliana and A. lyrata). We show that the absence of KCO3 does not cause marked ch...
متن کاملN-Ras forms dimers at POPC membranes.
Ras is a central regulator of cellular signaling pathways. It is mutated in 20-30% of human tumors. To perform its function, Ras has to be bound to a membrane by a posttranslationally attached lipid anchor. Surprisingly, we identified here dimerization of membrane anchored Ras by combining attenuated total reflectance Fourier transform infrared spectroscopy, biomolecular simulations, and Förste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2000
ISSN: 0021-9258
DOI: 10.1074/jbc.275.7.4708